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A conptuer code has bexen developed to nodel. the nonlinear resronse of 4

reinforced concrete elawnnts subjectedi to plane strain, plane stress or

axisynietric loading conditions. The material subroutine includes the fol1- o.-

I wing sources of nonlinear behavior: (a) Nonlinear stress strain curve for

concrete as represented by the end(xohr)nic model; (b) stress-strain curve

for the reinforcemnent including the elastic, plastic and strain hardening

stages; (c) concrete anisotropy caused by conplex stress states and cracking;

ard (d) the postcracking shear transfer mechanisms.

The corq)uter code has been checked with a very limited amount of j
experin-ental data for plain concrete and for an initially cracked reinforced

concrete panel subjected to biaxial stress states. In general, the code.k

predicts results that agree satisfactorily with the experimental, data but

needs to t further checked against additional test cases.
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1. Introduction and (koctives:

1.1 Inttoduction:

MIC.. VIX)1ll1noar iinaly,,i-. orF 1r--,ofl'ocd'•1• (vtnere:tv Ariit"•tirem,• by 1he ff1iti.e

element method cannot be succmsrutll.y ' -prfo-nvd if the principal sources of ma-

terial nonlinear behavior are not inchued i the formulation. The material

characteristics that have to be oonsidered are the non] inear stress strain re-

lation for the uxoncrtu, Lhe stress sAra i.n relation [or Lhtl ru.in•orcrmont,

concrete anisotropy due to complex stress states and cracking, postcracking

shear transfer mechanisms at open cracks, and the concrete reinforcement bond

slip relations.

This report presents a computer subroutine for the nonlinear analysis of

reinforced concrete elements that includes the nonlinear stress strain rela-

tions Zor the concrete and the reinforcement, concrete anisotropy due to

cracking and multiaxial stress states, and the postcracking shear transfer

mechanisms present at a slightly open crack. The nonlinear behavior of the

concrete is represented by the endochronic model ( 5 ) while the stress strain

relation for the reinforcement represents the elastic, plastiq and strain

hardening stages under monotonic or repeated loads. The postcracking shear

transfer mechanisms included in the subroutine are the interface shear trans-

fer mechanism on the rough surfaces of a cracked plane and the dowel action of

the reinforcement crossing the crack. The subroutine developed uses the

distributed crack approach to combine the stiffness matrix for the uncracked

concrete with the stiffness relation for the cracks that predicts the incremen-

tal stresses induc-d in a reinforced concrete finite eernz-nit by a set of

prescribed incremental strains.

Tie different sections of this report describe first the constitutive

ii-- •• . ... . -... .. . . ...- .
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a detailed discussion of M 1. the exic suibroutines. Finally, several eqxpriwm~n-

tal tests are c=qiared with the results prelicted by the ctMtuLor proxjram to

determiv its validity.

1. 2 qObictives.

The principal objective of this pr. ject was to develop a material

subroutine that included the principal sources of nonlinear behavior in' rein-

forced concrete. 'Din spec!fic objecti"vs a-o:

A. Development of a material subroutine that calculates the incremental

stress vector caused by a given vector of strains in a plane stress, strain

or uxisymetric finite elemnt. The subroutine should consider the nonlinear

behavior caused by the following sources: IA

1. Stress strain relation for concrete based on the endochronic

Wmoel presented by Bazant (2, 3 ).

2. Concrete anisotropy caused by cracking and multiaxial stress

states.

3. Postcracking shear transfer mechanisms. Both the interface

shear transfer and the doIl action stiffness representation are included in

the subroutine.

4. Stiess-st,-ain relation for reinforcement that rDdels the elastic,

plastic, and strain hardening stages for nonotonic and repited loads. I'

B. Conparison of the material subroutine code predictions with available

experimental data to establish the valitidity of the proposed formulation.

2- Constitutive Ra.lations for Nonlinear Analysis of Reinforced Concrete

2.1 Introduction:

The following sections present the theoretical background required to nodel
the no.linear behavior of reinforced concrete in the ccnputer program. First,

..............
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strain relation for the reinforced concrete elonemt. For eo•ients tlhat have

cracked, howver, the incremental stiess-strain relation has to consider the

constitutive relation for the cracks, presented on the last section of this

chapter.

2.2 Constitutive Relations for Cbncrete:.

Several theories have been devloped to predict the response of plain con-

crete to multiaxial stress states among which are the linear and nonlinear

elasticity theories, the' work hardening plasticity theories, the plastic frac-

turing theory, and the endochronic theory (4,8). Of tnese theories, the

endochronic theory has received particular attention as it provides a contin-

ous mndel for the nonlinear representation of concrete without the explicit

formulation of a yie!A condition mad hardening rules. The endochronic model

developed by Bazant and co-workers (2 , 5 ) have been used succesfully to

predict the nonlinear stress-strain curve for concrete subjected to ronotonic

or repeated loading.
I The enIdochronic cheor, for concrete initially prolmosed by Bazant ( 2)

introduced a non decreasing scalar variable, denominated intrinsic time, to

represent the accumulation of inelastic strains as a function of the strain

increments applied to the element. The intrinsitive incremnts were assurred

to be sensitive to tne hydrostatic pressure.. The theony also modelled the

strain hardening anid strain softening regions of the stress strain curve for

concrete, the inelastic dilatancy due to shear straining measured by anothier

non-decreasing scalar variable, anid the (,kpendance of tfhe incrcsuntal

......---.... .......... . ...
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dctpondance of nkitC'ridl Ixru---r (,41 stiviuqthi, andi in in;rnvtt1 dekiription of

the strain softening behavior u.ider •ixotic or repeated loading. The refined

endochronic modxel was used to represent the nonlinear behavior of concrete in

the material subroutine.

2.2.1 Einrchronic bkxdeel for Trialxial Behavior of Concrete

The stress strain relations for the endochronic model are qiven in terms

of the deviatoric and volumetric relations, as follows:

Aeij AS +4e la

AU. = Ao + AL lb

Vhere: Ae1j, AS1j deviatoric coqn)onents of strain and stress tensor,

respectively.

Ac, Au = volumetric c monent of strain and stress tensor,

respectively.

I' = inelastic deviator strain increment.

A: inelastic volumetric strain increment,

K, G = Bulk and shear nx~dulus.

i, j = Carte sian coordinates indexes.

The volurretric carponents of the strain and stress vectors are cimputed

from.-

Ar. - F11 + E22 + u33 2a

AC = a11 + 022 + a33 2b

while the deviatoric ccaonents are obtaired from:

- .- .
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ASjj An1i - k nij A-

Wliere: 6 Kronecar Delta given by:

I for i j

0= fori j

The inelastic deviatior strain increrret is a function of the distortion

intrinsic time paraneter, Z, and of the deviatonic stress# Sijp given by:

'i Wij

The inelastic volumetric strain increment is a function of the volumetric

stress, a, the inelastic dilatancy X, the shear compaction X', and of the cmnr-

paction intrinsic time parameter Z . The compaction intrinsic tire parameter

Z have been introduced to account for the volumetric inelastic strains caused

by hydrostatic stress states, while the shear compaction parameter X' accounts

for the increased volumetric strains observed in triaxial stress tests when

compaarad to hydrostatic stress tests. The inelastic volumetric strain is given,

by:

A•, = AX + x AZ'+A' 5 +

Thus, the inelastic deviatoric and volumretric strains are a function of the

distortion intrinsic tine Z, the compaction intrinsic time Z', the inelastic

dilatancy X, shear cormpaction X', the bulk and shear modulus, and the volu•e-

tric and deviatoric stress components present in the element. The endochronic

parameters and the bulk and shear modulus are oomputed from the set of equa-

tions summarized in Appendix Al. It shculd be noted that the functions used to

calculate the intrinsic time parameters, inelastic dilatancy and shear compact-

ion are a function of the current stress and strain invariants, and of the

principal stresses in the element. Therefore, for a prescribed strain

increment, the associatted stress increment has to be computed in an iterative

S.... .-.. .. . . ..- •• -' : .-"-• %. -- •: :•.. -
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parameters, as well as for the stress and strain vectors, are required for the

..:.. eq.tions given in Appendix Al. The current, value of any parameter at the end

of a straiý increment is calculated from the increment of said parameter computed

when the iteration is finished, and the value obtained in the previous strain

increment.

The stress strain relations in terms of deviatoric and volumetric cc'po-

nents given by Equation 1 can be combined to obtain an incremental stress strain

relation in terms of the element coordinates, using the relations given by

Equation 3. Rearranging Equations I, we have
'II

ASij = 2G Aei9 -2G Aeij 6a

AG = 3K Ae- 3K A ' 6b A

If we define the second term of the right hand side of Equation 6 as an

equivalent inelastic deviatoric and volumetric stress increment, we then can

..rearrange Equation 6 in the following form:

ASij + ASij = 2G Aeij 7a

Ao + Ao'' = 3K At; 7b

where:
I,!

ASij = deviatoric stress increment

Au''= volumetric inelastic stress increment

The incremental stress-strain relation in terms of the element coordinates

can then he obtained by adding Equations 7a and 7b. Thus r
Aoij + (ASij+6ijAo") = 2G Aeij + 3K 6ij AE 8

where •

Il
Ar

ail . . . . .X. V
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In maitrix form, the-incmonunLal stkrcss strain relation is then given by

the followinj relation, wherio the axis directions are definod in P.Jlure 1.

An11  AMl 1 | I)D D2  0 0 0 At. 1

Ao2 2  Aa22 1)2 1)2 0 0 A

"Ac)3 3  Ac3 3  L2 D2 Dl 0 0 0 AE3 3  "a -:
"•;; • ~~9a - -

D3 . 0' Ai 12 I.-
} A 12 +' A(121 0 . 0 o D3 -,0 ' ,-12 , 4 •,

S'' 0 0 0 0 D3 0 ArI3
Aol3 13  3 1 3

A023 0 0 0 0 0 )3 j-E.2
1AUA

Where:

D K + 4 G 9b

D2 K- G 9c
'3

D3 = 2G 9d

.A For plane stress conditions, the following boundary conditions are known:

Ac2 2  Aol 3  6A2 3 = At; 1 2  A(:2 3  0 10

IHence the incremental stress-strain relation is given by:11 2 1 211
Ac 3 3 A(33f D2 -D2 /Di. D2-D2 /D 0 A3

"Where:

Aull = Ao D?2 A122 lb
D1

D1

and the strain component in the normal direction is given by:

A22 = A02 - D2 (AF: 11 + At 33) lid

-- __D1____._____.

22-
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flence, the following .incro.urinta.. ;Ltress-strain relation results:

A 11.. A(5 D D 0 1 A

I I 1 . D 0 A
A(33 + A,33 = 2 1 33

AO1 3  Ao 0 0 D A[

The normal stress in the third direction can be computed from:
U,

A,2 )2 (A, I Ai 33) - AO)22  14

Equations 11, 13, and 14 have been implemented in tie computer code to

calculate the stress increments for plane strain or plane stress conditions.

For a prescribed vector of incremental strains, the corresponding elastic incre-

mental stress vector can bxe cxmputed from these equations once the elastic

stiffness coefficients and the inelastic stress increment vector have been cal-
LI

culated from the endochronic parameters.

2.2.2 Linearization of Endochronic Formulation

The incremental stress-strain relation given by Equation 9a is expretsed

in terms of an elastic and an inelastic stress vector. This relation is

adequate when the concrete stiffness matrix does not have to be combined with

the crack constitutiv. relation. For this cases, the endochronic stress

strain relation needs to be formulated in the following form:

{M},. Dj ~r 15

Where:

AO = incremental stress vector referred to the element coordinates.

AC} = prescribed incremental strain vector referred to the element

coordinates.

D] matrix of elastic stiffness coefficient for linearized endochro-

nic formulation.

I12
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following relation.

Aeij

Aý A 16

-The deviatoric inelastic stross vector component can theon bre expressed

by:

F
rAS. --j (13. Aei 17a

Where: ation

Aej 6
2V 2 (Aei-j)"j

The voluiattric inelastic stress vector comqxpnent can then be expressed by:

Acij = +Bi Ae(j 18

Whre Aý K(. +

Z2h

Hence, the increnmntal stress strain relations in deviatoric a3nd voltumetric

components are given by:

ASij = 2G Aej2 - sij) F. Brs) P Crs 19a I
= 3KAhE 21L + 3K( (Z; +£L + )L')B 19b

M Bij Aeij.1
"(2~

The total incremental stress vector, referred to the element coordinates is

then given by the following indicial relation.

Au- = 32 ,riJs - Brsl B - 3K (t,.1+V,.L ) 6 ij B ers 19e
Zl f

+(K-aH) 6 ij 15ýn A,:km 20

The elastic stiffness coefficients in Equation 15 are then given by the

following equation:



g10

I 1111 2

21
S( sj.! F + 3YK ,9.,,,9.,.,' )ij) ('•' - r~nn ) ]

[~ 3

In the computer program, the above calculations are performed only for the

in plane normal and tangential stresses and strains, and for the normal stress

and strain in the direction perpendicular to the plane considered. Thus, once

the deviatoric stress and strain conponents for each direction is calculated

the coeficients Bij amr computed t(v other with its volumetric conmpnent.

Let the variable x be defined by: 7-

Xij = S F + 3K (k. L + £' . L') 22

Z f

Then, the eleirents in matrix [D'] are given by the following equations

for the general case of plane stress or strain:

ElD (i =,l -K X B 23a
3Z2 h

D (2,2) = K + 3 G - X22 _ - Bnn 23b

D (3,3) K + 4 G - 2 ll X3 3 (B3 3 - n) 23c
3 3Z2h

D (4,4) = 2G - X4 4 B44 23d

D (1,2) = K - 2 G - (311___ B 23e
S32h-X (B2 2  )

D (1,3)-K-2 G - X11 (B33 -Bnn 23f
3Z2h

D (1,4) = -X11 B44 23g

D(2,1) = K - 2 - .l X22 (B 1 - Bn) 23h

D' (2,3) = K - -_Bj2Bnn231
372h 2 2  3 3

D (2,4) = - X2 2 B44 23J

D'(3,1) =K - 2G - Oil - B 23K

S 3/.2h 3 (B I-B

3& - ..... ....
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D (3,4) -X21 B 231- -33 B44

D (4,1) =-X 4 4 ('11.1- tlfl 23n

D'(4,2) X 23a
3 _

D (4,0) -X 4 4 (B 23p
33 3

FF.3

Where:

S1311+22+1333

The stress strain relation given in Equation 15 is referred to the

element local coordinate systemi, which for the computer program has been assumed

[to be oriented along the principal stress axis. To obtain the incremental stress

strain relation in terms of global coordinates the stiffness matrix tDJ shall i
be transformed to the global axis my mans of the following relation:

[Dig =[T] [D'] [T]1 24

Where:

Dig= stiffness matrix for concrete in global coordinates

[T] =transformation matrix given by:

c 0 2CS

0 1 0 0
[T] 2 2 25
[T S C2  0 -2CS

-CS CS 0 C2-S2

C = Cos It

S = sin (a

a= angle between global and local coordinate axis

(See Figure 1)

2.3 Constituti' Relations forRleinforcement:

The constitutive relations for the reinforcement subjected to monotonic

-. .. ,;.., : :.. .. ..
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reinfor'ced concreten structures. A typi.cal stress-strain curve for the reinforce-

nr.ent subjected to monotonic loading is shon in Figure 2. Three different

stages cf behavior are evident, naimuly, the elastic range, the plastic range,

and the strain hanekniriq rinlqo,. luiri nq the (l'• it~c Stae., thin relation Ix txwe.n

stress and strain is linear and is given by the modulus of elasticity of the

reinforcement. For the plastic range, the strain increases continously at a

constant stress and the nodulus of elasticity is zero. For the strain harde-

ning region, a nonlinear relation exists between stress and strain, and a much

more complicated stiffness relation has to be determined from experimental

data.

The following relations have been suggested (7) to model the stress-

strain curve for monotonic loading up to failure. I
Elastic Region (<E-y): fs ED. 26a

Bs 29000 Ksi 26b

Plastic region (Ey<:<:sh): fs = fy 26c

E 0 26d

Strain hardening region ( <sIh'- su):

fs = fy [ l12(,-,.sh)+2 + (,U-':sh) (fsu - 1.7) 26e

60 - sl)+2 SEU- .h)\ f y
10 4 fy + fsu + 1.7 f 26f

(60( 0 -t- +2) 2  fy(E-su - s$h

.iere:

fs steel stress at st:rain

fy = steel yield stress

fsu = steel ultinete stress

= actual steel strain

C = Steel yield strain

L sh steel strain at the initiation of strain hardening= i
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Rs = Elastic n1xiultis of elasticity

E - Mdulus of elasticity at qiven strain

The monotonic stress-strai n curve serves as an envelope for specimens

subjected to reixiate'd h-idit ti. UIx)n iniLial loaIdincj, the stress-st0A.aiw is si-

milar to that for monotonic loadinq. Upon unloading, the stiffness is similar

to the linear loading stiffness but a residual displacement will be observed if

the specimen has been strained to the plastic range. When the specimen is sub-

sequontly loaded, the slt;-,-rd~n relation is linear until it coxincides with

the monotonic stress-strain curve, whereupon it follows the virgin stress-

strain relationship.

The above constitutive relations are valid for uniaxial stress states

only. For reinforcement oriented alomc 3 arbitrary directions, the constitutive !

relation is given by:

= DS L 27

Mi~ere:
Ao incremental stress in reinforcement along bar orientations

AF'•. prescribed incremental strain in reinforcement along bar

orientations

[ D] S = reinforcenent stiffness mntrix

The reinforcement stiffness matrix referred to the bar directions as given

by:

PI El 0 0

l0 2E2  0

rD0 = . 0 J3E3

Vere:

P1,P21P-2= reinforcement ratios along bar directions 1, 2, and 3.

E1 E2 ,E3 = modulus of elasticity of reinforcement along bar directions

1, 2, and 3.
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shear transfer t tiff ness are tlE initial crack width, the axial st-iffness of

the reinforcement crossinq the crack, anrZl the application of cyclic

loading.

The dowel acti- nuchdnism is provided primarily by the berding and

shearing stiffness of the reinforcement as a tangential displacemennt is experi-

enced along the crack length. The dowel stiffness of the bar depends ,mainly

on the bar diameter, the concrete tensile strength, the axial stress in the

reinforcem-nt and tlh application of cyclic loadings.

On an cracked surface of a reinforced concrete element, both mechinisms

are activated similtaneously to transfer the applied shear force across the

crack. A complete matheratical description of the forces and displacements

exaxrienced across the crack can be obtained if a flexibility relationship of 1
the following fo-rm can be estab.islhld:

[j.F1 F21 {'I 30A6s Ac r 3 F 4 An, nt ,3!

A6n normal displacement at crack

A-s = tangential displacenent at crack

Aon normal stress at u.rack

nnt = tar'gential strces at crack

Fl, F2 , F3 , F4 = flexibility coefficients at crack

A = area of shear plane
c

The flexibility coefficients req-iired for Equation 30 have been derived

in Pef. 12 by applying incremental unit normal and shearing stress as at the

cracked surface and calculating the associatted incremental normal and shear

displacements.

Coefficient F1 reflects the change in normal displ.acement experienced at

"-ig



161

|I m (1 t.1(.k WWIII aIll 111.1t ll4tw i ll .1 kllil I IN)ill 1 1 lmlq'm i' 141 ,q i ('4l l,) tl14. -.NIl ll pI oI, .. ,

'lids coefficient can be simply described by the inverse of the normal restraint

stiffness provided by the reinforcxmcnt crossing the crack, defined by:

Kn -31 A611

Hence, coefficient F is given by:
F = 1= 32

Kn 82406w

Where the rormal restraint stiffness Kn, is calculated from the relation pro-

posed by Jimnncz, et al. ( 13)

The flexibility coefficient F2 represents the increase in normil displace-

,ent caused by the applied shear. If it is assumed that the increase in crack

width or normal displacement is caused mainly by the interface shear transfer
stressesp~ie Increase in1 crack width can be calculated from the normal stresses I

induced by the applied shear. Based on an expression proposed by Reinhardt

and Walraqen (17), the change in crack width can be calculated from:

0.176c + (0.22c -1.034) rc - -- -- •33
2 Kj ~-0.8 -707A0. 1 35 3c + (0.164 c -1.379) fc

1Wiiere:

( = ratio of interface shear transfer stiffness to the sum of the

interface shear transfer and dcwel action stiffness. i
f = concrete compressive strength (ksi). H
C

c = initial crack width (in.).

The flexibility coefficient F3 can be calculated if it is assumed that the

increase in shear displacement is caused by the reduction in the interface

shear transfer stiffness associated with a larger crack width. In mathematical -i

terms,

F d6s _ As dhc 34
3 dAOn dAh'6 dAon
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the chanWe in crack width will No obtaint-d once the equation for the coefficient F4  *1
is obtained. Note that in Flquation 34, the change in normal displaceront with

respect to the chance in nornal stress is proportional to the normal restraint

stifft"ss. Thus, lRquation 34 cain hx rewritten as:

F dA~s 35
3 Kn

The flexibility coefficient F4 represents the incremental shear displaceuent

experienced at the crack when an increnpntal unit tangential shear force is

transferred across the crack. The shear displacement is inversely proportional

to the total stiffness provided by the interface shear transfer and the dowel

action mechanisms. Given the stiffness of both mechanisms, the function F4 can
be calculated fromu the folhjiq e�4uation:

F[ = 36
Ka + Kdl

F Where:

K interface shear transfer stiffness (K/in)

Kd = dowel stiffness of reinforcenient crossing the crack (k/in)

Based on a review of several relations available for the interface shear

transfer and dowel action stiffness, the following equation was selected

from reference 12.

Interface Shear Transfer Stiffness:
Ka = 37

3.9(c-0.002) + 1.09x10" 7 (3.4 x 10 - Kn

Were:

K = interface shear transfer stiffness

Kn= normal restraint stiffness

$ •'
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B2 16 2 B2 b

2[[2 Vdu -11 2 • + 4 Iil.dtV/ Vdu (• 1/
0.3 x 30- ( W3

B1  * (1-2If8/1) > 0 39and .2 3

B2 db/-2

3x0- x• 10- a.

= 2 for Vd < . 9 Vdu 41
(11 = 62 for Vd > 0. 9 Vdu 41

S= 0•for Vd < o.9 Vdu 42 -7

"2 = -54 for Vd > 0.9 Vdu

6d = dowel displaceimrnt (in)

fs = axial stress in reinforcement (Ksi)

f = yield stress of reinforcement (ksi)

Vdu = ultimate dwl capacity of reinforcement (K)

db = bar diameter (in)

The ultimate dowel capacity of the reinforcement is controlled by whether

the dowel will fail by yielding of the reinforcenvent or by concrete splitting.

Thus, the ultimate dowel load is given by the smaller of the values predicted

by the following relations:

Failure by yielding of the reinforcement:

2 --
Vdy = 0.92% f'y fc 43

V = dowel failure load caused by yielding of the reinforcement (Kips)

, -
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Failure by concrete splitting:,

d bb 0.54cmb 4n 4l v• - • o.47 + ----
112

Maxer

o dowel failure load caused by concrete splitting (Kips)

bn - net width of section perpendicular to load direCtion (in).

nb - nuzrber of bars per layer.

Cm = smaller of side or bottom concrete cover of the reinforcement (in)

Thus, the flexibility coefficient F4 can be obtained from Equation 36

once the interface shear transfer and dowel action stiffness have been calcu-

lated from Equations 37 and 38.

The equation for coefficient F can now be presented once the first

derivative of Equation 37 with respect to the initial crack width is computed:

~ ~.9 .09x10-7  Kn

S  [3.9 - AVO 45 I-

• .•• WIre:

00VO= shear stress incremrent applied in previous step. I

2.5 Constitutive relations for Cracked Reinforced Concrete

The incremental stress vector induced by a prescribed strain increment in

a reinforced concrete element can be obtained from the increnental stress

vectors sustained separately by the concrete and the reinforcement, provided

that the concrete element has not cracked. If w assume that the average

strains in the concrete and the reinforcement are equal, then the total incre-

mental stress can be calculated from:

= [D[s + :Av.J1 46

'.. . ....... -...



- .total incremental stress vector

{At.} = prescribed incremental strain vector '1
D] = stiffness matrix of uncracked concrete element

D ] stiffness matrix of reinforc-awnt

j For reinforced concrete elements where the principal tensile stress has

exceeded the maximum tensile strength of the concrete, the incremental stress

- Vol "vector is a function of the tangential and normal stresses transferred across

Hthe crack. For this cases the constitutive relation given in Equation 46 has

.K.- to be modified as described subsequently.

When the principal tensile stress exceeds the maximum tensile strength of

the concrete the prescribed incremental strain calculated for the current step .'

Pal has to be divided into the incremental strain required for the element to crack

U and the remaining incremental strain necessary to complete the total incremental

strain computed for the current step. Hence,

f {AE}= At}+ {AC} 47

Where:

{ ICA = total incremental strain at current time step

I AE}- incremental strain required for crack initiatioi,

AE { incremental strain required to complete the total strain increment

assigned to curzent step.

The incremental strain required for the element to crack is estimated from

the proportion of the stress increment at which the principal stress equals the

tensile strength of the concrete. Said proportion is given by:

n-1

P Pln - C°pl 4

Where:

P = Proportion of stress increment at which crac.ing ocurred

S......... • . ... -• -•.-•": "•" ..................................-................ .. .. .•-• .
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0 0 1 n principal tensile stress at current step.

H pl n-i principal tensile stress at previous step

Thus, the incremental strain at which cracking ocurred is given by:

{Ar.}' P A1& 49

SThe remaining incremental strain to be applied to the cracked element

: during the current step is then given by:

= (1- P) {Ar} 50

The incremental strain applied to the cracked element required to complete

-, the current step is distributed between the cracked and uncracked sections ofi

the element according to the following equations:

{A} cr = R At 2

!{ Arunc = 2-rx {A2-

Where:
A cr = strains contributed by the cracks in the element

S{~Agnc = strain contributed by the uncracked section of concrete within '

II•:- the cracKs.

a = proportion of incremental strain provided by cracks within the

element

Once the strains contributed by the cracks are known the average normal

and tangential displacements can be determined from the crack spacing, as

given by the following relations:

{' I c I:nt1r 52

A661 A~

Where:

cr = incremental strain normal to crack contributed by the cracks

A,-cr = incremental strain parallel to crack contributed by the cracks
t

Sc = crack spacing

. , . - -. -.. . -. .. .c..
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"At F 0 Ao
ALn ' 2 n

o 0 0 0 0 0
52

0 0 0 0 0 0
F3  0 0 P Ant

The strains contributed by the uncracked concrete between the cracks

are used to determine the endochronic parameters required to calculate the con-

crete stiffness matrix given in Equation 15. As the stresses in the uncracked

concrete and in the crack have to be similar, the proportion of incremental

strain taken by the uncracked concrete (See Equation 51) is determined in an

iterative fashion from the following relation once the crack flexibility matrix

and the concrete stiffness matrix are known:

A = [Ac [F][D] + [I]]1 Ac 53

If the new value for the uncracked strains are within tolerable limits of

the assumed uncracked strains, then the convergence requirement that the j

stresses in the solid concrete be equal to the stresses in the cracked concrete

has been satisfied. Otherwise the previous value of uncracked strains is

replaced by the latest vector of Lucracked strains, a new cracked strain vector

is computed and the cracked flexibility matrix and the uncracked concrete

stiffness matrix are palculated again. The iterative procedure is continued

until the convergence requirement is satisfied.

The incremental stress for the cracked elements can then be calculated

from the following constitutive reiation for cracked reinforced concrete.
7.,

S• ,
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Thus, the total incremental stresses in the concrete attained during the

current step are calculated from:

{Ao} = {Ao}' + {Af1} 2  55

Where:

Ao} = total incremental stresses in concrete during current step

{Ac}1 incremental stresses required to crack the element
2

M = increme.ntal stresses For the crack(1 element

The total stresses sustained by the reinforced concrete element is cbtained

by adding the steel stresses to the concrete stresses computed from Equation 55.

It should be noted that the crack formation criteria used in the ccmputer

cxle is based on the maximum tensile stress criteria. A tepsile crack is formed

whenever the principal tensile stress exceeds the maximum tensile strength of

the concrete. Once the crack is formed, the stress in the concrete normal to

the crack is set to zero and the concrete strain at which the crack ocurred is

stored. The crack is assumed to close whenever the concrete strain is smaller

than the strain at which the crack ocurred. For closing cracks, the constitutive

relations used are similar to those used for the initially uncracked concrete.

The crack is assumed to open again whenever the concrete compressive stress

drops to zero,whereupon for subsequent loading, the constitutive equations for

cracked reinforced concrete, given by Equation 54, are used.

3. Computer Program for Nonlinear Analysis of Reinforced Concrete

3.1 Introduction:

The computer program developed to model the nonlinear behavior of reirforced

concrete plane stress or plain strain elements based on the theoretical concepts

established in Chapter " is given in Appendix A2 A flow chart is

first discussed herein to establish the sequence of principal operations
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in an existjnct cmilpter proqjr'im at- the Air rorce WennsT a-,oratory idontificd

by the acronym of SAMSON (6). ''h.ts cck' is used to perform nonlinear dynamic

cuialysis of plane and axi.symntric problems but at. present considers only the

nonlinear stress-strain relation for concrete. The material subroutine

discussed subsequently should enhance the analytical capabilities of the

conqiuter code SAMSOM.

The main purpose of the compute,: code is to calculate the incremental

stresses induced by a prescribed vector of incremental strains for an uncracked

or cracked reinforced concrete element. The material subroutines requite that

the prescribed incremental strain vector be defined beforehand. The code does

not include an equation solving subroutine as those operations will be

performed by the principal code SAS(1.E.

3.2 Se§iuential operations of oComuter Program:

The following operations are performed by the material subroutir ! code for ,

each finite element in the analysis.

A. Read aLerial information and initialize variables for element

considered.

B. Determine incremental strain vector for current step.

C. Compute set of constants rx-juired for the endochronic model.

D. Compute stress increment in concrete for prescribed incremental vector.

1. Change stresses and strains from global to principal directions.

2. Check for previous cracking in the element. If element has cracked

proceed to step D7.

3. Cocute endochronic paraneters and incremental stress vector for
concrete.

S -
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ti s snv.iller than tLhe (.vin)roLto tensile st.nqlth I(jo to stel IB.

5. Determine oror arx! mmxixr of cracks.

6. Upl•fl to sti!nke ino ill vu-rrtt- stp to stLt' or Li.)ilent c-rackinq.

7. Start iterat ion for tIn(vroo('ked st-rlainls. Dlr•termilli. striiit i( )ll

of incremnntal strain vcctor left in current step between the

uncracked and cracked concrete.

8. Determine total cracked directions.

9. [Dternmine crack flexibi I ity nuLrix.

10. Determine uncracked concrete stiffness matrix.

11. Ccvpute new vector of uncracked strains.

12. If number of iterations for uncracked strains is smaller than

three go to step D7.

13. Ccopute stresses in cracked concrete element.

E. Compute incremental stress vector for reinforcement caused by pres-

scribed incremental strains.

F. Transform increme ntal stress vectors for concrete and reinforcerent
to global directions.

G. Update stresses and strains.

H. Proceed to next strain inciement

I. End

3.3 Description of Code Subroutines:

The coimputer code presented in A4ppndix A2 contains 14 subroutines in

addition to the main section of the program. The main section is used to

compute. the incremnwtal strain vector according to the analysis desired

and to read the control and material data required. The subroutines are

described subsequently.

J



procram~cocivtos tle cnstant txk m ic'f'ixnts retquit-rd for the endotlhroni(' eqila-

tions given in Ap..ndix Al. Input: rc..u.r.d are •c concrete compressive

.1 strcngtii, thec rainforcunmi't yiold. sttov,, mind the refi.ort-wenr't ratios in each

direction. Ibits subroutine' (Výx-s tv~ (Nil --viy oiLIxr siibroutinn.

Subroutine CRAL2III: This subroutine is called by subroutine MATER! to

determine if initial cracks have ocurred duriu,.g the current stress increment or

to determine if the cracks in a previou-sly cracked element are closed or open.

Input required arc the stress and strain vrcbirs for the current and post steps

and the strain at which the crack opened previously. This subroutine does not

call any other subroutine.

Subroutine CRASTI: This subroutine is called by subroutine ONECRA to

compute the crack flexibility miatrix. Thaquired input are the previous strain

and stress vector, the proportion of increm'ental strain contributed by t~he

cracks, and the geomretric propeities of the elemennt such as bar diameter,

concrete cover, number of bars, etc. This subroutine does not call. any other

subroutine.

Subroutine F¶JNEND: This subroutine is called by subroutines MATE.R1

and ONECRA to compute the endochronic mod~xel. Subroutine MATERI calls FUNEM'D

to compute the incremental stress vector for uncracked concrete caused by the

prescribed incremental strains. Subroutine ONECRA calls FUNEWD to comrpute the

uncracked concrete stiffness matrix for the uncracked incremental strain

vector and to comrpute the cracked concrete incremental stresses. Required

input is the stress and strain vector for the current and previous step and

whether the elenent is in plane strain, plane stress or axisyitetric. This

subroutine calls subroutines INVAR and PRIN.

Subroutine CRALIAL: This subroutine is called by subroutine MATERI to

transfom the cafi utid concrete and rein forcement stress vectors in the

., _'

tOdtrieiftecak in prviusy rake e-nm r clse ogoe.
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Required input is the stress voctor to tv calituted and the angle betwten the

principal axis and the qlobal coordinate axis. This subroutine does not call

any other subroutine.

Subroutine INV: Tlis subroutine is called by other subroutines to ca)qute

• . the inverse of a given matrix. Required input are the matrix to be inverted,

the array where the results will be stored, and the order of the matrix. This

subroutine does not call any other subroutine.

Subroutine INVAR: 'lbis su))r)utiin is calle by subroutine FTUNT'W) to

conpute the stress and strain invariants for the current values of the strain

and stress vectors. Input required are the current values of the strain and

stress vectors, together with the incremental strain vector. Subroutine

INVAR does not call any other subroutine.

Sbroutine MATER1: This subroutine is called by the main section of the

program to ccmpute the incremental stress vector in the concrete and reinforce-

ment caused by the prescribed strain vector. Input required for 'this

subroutine is the currcat and previous step vectors of stress and strain, the

total stress vector of steel stresses and whether the element is in plane

stress, plain strain or axisytmmtric. This subroutine calls the subroutines

lRFAqE, MND, CRACHK, ONECRA, and STEEL.

Subroutine MATIU; This subroutine is called by other subroutines as

required to multiply two given matrices. Input required is the name of the two

matrices to be multiplied, the name of the array where the results will be

stored, and the order of the matrices. Ibis subroutine does not call any other

subroutine.

Subroutine CNECRA: This subroutine is called by subroutine MATER1 when

initial cracking i-n an element is detected. The subroutine updates the stresses

to the state of incipient cracking, determines the proportion of total strain

. V -
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iteration on the cracked aixd uncracked concrete strains, and conputes the

stresses in the cracked conicrete. 'Ill input required are the current and

previous atep strain aiid stress vectors referred to principal and qlobal di-

reactions, the strains at. which crackinq previously ocurred, tLhe anlgeq beteLw11n

the principal and global directions and the cracking direction. This

subroutine calls subroutines CRASTI and FUN .D.

Subroutine PRIN: This subroutine is called by subroitines ROTATE and

F•NEND. Subroutine ROAIrE calls PRIN to determine the principal stresses or

strains fran the global stress or strain vector. Subroutine FUNIND calls

PRIN to arrange the maximun, intermediate and minimum principal stress in

increasing order of magnitude. Input required is the stress or strain vector j
and whether principal stresses are to be computed or not. This subroutine

does not call any other subroutine.

Subroutine ROWATE: This subroutine, called by MATER1, ccmputes the prin-

cipal stresses and strains for the current and previous strain and stress vec-

tors. Input required are the strain and stress vectors for the current and

past steps. This subroutine calls subroutine PRIN.

Subroutine Steel: This subroutine is called by MATER1 to ccopute the

incremertal stress vector induced in the reinforcewment by a prescribed strain

increment. Required input are the current and previous strain vectors in

principal and global (oordinates. It should be noted that in this subroutine

the bars are assumed to he oriented along the element global directions (See

Figure 1). This subroutine does not call any other subroutine.

Subroutine ZER: This subroutine is called by the other subroutines as

required to initialize the values of arrays to zero. Input required is the

matrix to be initialized and its order. No other subroutine is called by

ZER.
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plain concrete in un•ixial and biaxial. stress states, and for reinforced concrete

pa•iv-s subjeed to biaxial stress staLes.

4.2 Stress strain Curve for Plain Concrete:

In this section, the stress strain curve for plain concrete predicted by

the cotputer code is compared with experimental results for uniaxial and

biaxial stress states. The prescribed strains are increased in 0.0001 incre-

ments and the resulting induced stresses are ccumputed from the constitutive

relation given in Equation 15 for the corresponding stress states.

In Figure 3, the computed stress strain curve for uniaxial loading of

plain concrete is compared with the experimental data given in Reference 10

for various concrete strengths. The endochronic formulation coded in the

program predicts curves that are very similar to the observed behavior. L
Figure 4 compares the stress strain curve for biaxial stress states com-

puted by the program with the experinvntal ox)ints determined from Reference 14.

As for the uniaxial tests, the predicted values agree wil with the observed

behavior.

4 3 Stress-Strain Curves for Reinforced Concrete Panels Subjected to Biaxial

Stress States:

Several experimental results have been reported in the literature (16,

18) where reinforced concrete panels have been subjected to monotonic and cyclic

shear stresses. In this section the results of one test reported by

• - ' •. ...- • •3 * • -- ...... ." ." 4"
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the cxxe is incorporated to the main program to determine its general applica-

bility to nre cxri.ex probIt.-in.

'T'l)2 test Slxc.iUIn r•t,•)rtxLd by .,rd.ikaris, et al, had i central section

of 24 in by 24 in with a thic'kctss of 6 in and reinforceL in one direction

with one layer of #4 bars at 6" spacing and with two layers of #4 bars at

6" spacing in the perpendicular direction. The concrete coq)ressive strenqth

was 3160 psi, while the reiniorcem.unt yield stress was reported as 61000 psi.

The specimen was stbjected to a monotonic shear stress up to failure without

the application of biaxial normal stresses. The ultimate shear stress

sustained by the specimen was reported at 475 psi.

The experimental load deflection curve determined for this specimen is

given in Figure 5 together withi the calculated load displacement relation. In

general, both curves corelate well but Lhe model fails to predict the correct

ultimate shear stress. It has been observed that the crack flexibility matrix

becomes i~lconditioned at large strains and predicts siqnificantly different

results for the cracked incremental stresses. It is believed that the problem

is caused by the equation proposed the flexibility coefficient F3 .

VI
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*, Con cIlus tons:

_.The computer code developed herein can be used to nidel the nonlinear

behavior of cracked reinforced concrete in finite element analysis. At this

point, the code considers the nonl.incar stress-strain curve of plain concrete

and of the reinforcenint, the anisotrx•py indv(wxe by ccnlex stress states anKI

by cracking, and the postcracking shear transfer mechanisms. The code can be

used for the nonlinear analysis of reinforced concrete structures once it is

incorporated into the main program SAMSOM. . i

The program predicts results Ltat aqree reasonably wdll with a limited

amount of experimental data for plain and reinforced concrete elements. A

large ntmber of additional tests should be conducted when the material subroutine .

is incorporated in the main program to check the program predictions with the

available experimental data on reinforced concrete panels reported by !

Perdi'laris, et. al. (16) and by Vecchio, et. al (18). This effort will deter- 1
mine t4ie final application range of the material subroutine developed herein.
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'ii

'Ific equations prx'so|nLe hcrein arc, stumrized frLtm Rof. 5 , to c•iiute the

material constants wnd funict ins rxurinrd to nxxtL.1 the nonlinear behavior of

concrete.

Distortion Intrinsic Time Paramuter Z:

AZ AC A1.1 *

Ar, AN A1.2

An (F)A A1.3

(J 2 (Av) i/2 AI.4

F = I + F2 A1.5

F1 a.8 (1-gl) A1.6 ~
1-~ ~ ~1 a5[3C[/3 (1+ g2

1 a

F2
F2  A1.7

F2 = a 2 ./i2K (1+la 6 12(() 1/4 + F5 1 A1.8.

F2  =1 -a 1Il(ci)+ a8 12 () /4F) J 2 (g3 ]/8 (-..g-) A1.9

J 2 2() (I+a 9 /T12 ) M

1 g+ g 2 F A1.12g1 -4 F2/a

V3r g21 + . aln A1.11

gl a1 4 J 2 lt:) 1/4 d 0 ne i -•in __15___-a2 -al6 AI1
0  a2 3

92 921. -9 -1-



g 1 2  I- [i+Ialo n Ai.15

F'21 Al.16

g~L! a1 A1.17B
%od -a23

g2_• --al9 [ a20 ]Omii,•n] l(Cmin - a23) A1.184i

(oWM-a23)1

g2 2 =[ i+ a21  - mi ]2"3-1 A

P2 ('-')1____/ _ A1.20

a 22 + 2

[ A1.21

a441/a+ [a 2 2] 1/4 ['
FS l nt 1Ia2"min~ A1.22F5 - an .• l~au•m• ia1~mnmIl 1/4 + [,,,) -7 -/ZA12

Compaictioni Intrinsic Tiime Paramreter z."

' i '1 84r, __ Al.23]

A = Arl A1.24

A= (H) AE' A1.25

At' = 1 ()AE:) A1.26

+: + +012
h 14 A1.27

1 b Al.28

b2-I 
..
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S1
4.1

""nonlastic DMI.atnc. ParamAT, -vr X,:

AN (9.) (L) (AM) Al. 29

9, = 1 - )Al. 30
A.0

L = C3  12 c4J2  Al. 31
1-.CI11() c) . J .

2 'L 2 ~I

Shear Conpaction Parameter :

A = () (L') Al..32

C= C6 (1- A / A.33

1/3
L _min 93 Al. 34

1 +l g3 / 8 13

g 0.93 1 c 7 min - J/2 () Al.35

Bulk and Shear Modulus:

= I EoI ,, A1.361 + c ( - )
5 i

I Eo A1.37
1 + c5•x 2 (l+-•

Stress and Strain Invariants:
The following equations are valid for principal stresses and strains only:

I1 (o) = Oll + 02 2 + 03 3  A.38

12(G) (o.ll_22)2 + (022 - 033) + (33-o11) Al239
6

13 (a) = (ol1) (022) (033) A1.40

I (AE) = A:11 +Ac2 2 + AE3 3  AI.41

"J2 () ((Ac - A2 2 ) + (AW2 2-A&3 3 ) + (AE3 3  - 1 1 ) 2  A1,42-( E . . . . . . . .

11 22 + (E2 2 - E33)2 (E33 -11)J0 A1.43
6



44

A1.44
ac)- 0.7

a, - 0,6/f A%1.45
= [ f• I/2Al. 46 : -

a2  1400 /

324000 AI.47a 3 = 4

a 4 = 0.045 AI.48

2160 Al. 49a 5 = -, T 72
(f,)

C

0.15 Al.50
a6 = (f)- 2

C

a7 = 0.05 AI.51

15 f,~ 1.5 A.5a8 = r A.5

(fc)2  6-

a9 = 1.5 x 10- A.53

a10 = 1.25 x 10- 4  Al. 54

0.2 Al. 55
all f ,

0.8 Al. 56a12 f
c

2.2 x 10-5 A1.57
a 1 3 =

f
C

a14 = 25 A1.58

a1 5 = 1.095 Al.59

a 16 = 1.216 
A1.60

A1.61
a1 7 = 0.055

a = 0.94 A1.62

a19  §.= 2 
A1.63

(f') 2

AI.64
a 20 = 14



.l ,000

Al. 66
a22 -- 0.04

, At. 67
a2 3 = 0.2 (f":)

fc
, A1.68

Al. 69
b2 fc

2 Al.70
Ci = -,

f
C

c 2 = 3 x 10-3 Al.71
Al. 72

c = 0.53
Al.73

c4 2.0
C4  12.0 Al. 74

5= 150
Al. 75

I= 30 Al. 76

2 3500 Al.77

83 = 0.08 Al .78

84 = 0.23

Al. 79
z = 0.0015 A1.80

= 0.0125 Al.81

ýo = 0.003 A1.82

= 0.18 Al. 83

CS = 0.002

c 7 = 1.05 x 10- 6  A.84
Al1.85

C8 = 0.001
Al.86

= 0.003

EO = 4 x 106 + (f' - 4650) x 103  Al.87

The concrete strength parameter f' used to compute the material constantsc

should be given in psi.
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DIMENSION DER(4)?DlUM(4)
C COM C(60),Lt(1,A)

DATA IS7RES .IESLAST9IF'LAS1*bDGT/2.0,0,O
D)ATA E 1(1),E2( 1) .E3(1)PE(4).E5(1)/O,0OOvOP
DO 11 1=1,4

C
C EPSTI1(IPJ)aPREVIOUS STRAIN OF ELEMENT I IN4 DIRECTION J
C EPSTI(I)=CURRENT STRAIN IN DIRECTION I
C SIGII1(J)=PREVIOUS STRESS O'F ELEMENT I IN DIRECTION J I-

C SIGI(I)-CURRENT STRESS IN DIRECTION I
STST(I)wTOTAL STEEL. STRESS IN DIRECTION I

EPSTI(I)m0

TST(K )=O
117 CONTINUE

STIMC=O,0001
C

IC INITIALIZE OR READ PREVIOUS STRAINS AND STRESSES
C

EPSTI(4)uEPSTI(4)+STINC
CFC=CONCRETE COMPRESSIVE STRENGTH

C FY-REINFORCEMENT YIELD STRE~SS
C ECTuMAXIMUM TENSILE STRAIN IN CONCRETE
C PSIPPS2PPS3 IS REINFORCEMENT RATIO IN DIRECTIONS 1,2 AND

r DATA FCiFYiECTPPS~IPS2iPS3/2263,t349O9.,-.01i.0179,O.,
110131

CALL COEF(FCPFYYEC'TPPSIPPS2tFS3)

CCI
C
230 CALL MATERI (S1ISII ý1 IiEPSTI tEPSTlI1 TSTPCPDCRPDIUNP ISTR
ES)

DO 118 Iml,4
SIGI1(11I)=SIGI( I)
EPSTII(1Ip)=EPSTI(I)

118 CONTINUE
EPSTI(4)=EPSTI (4)+STINC
END TO 230
SUBROUTINE MATERI (SIGiSIG1,EPSEF'S1,TSTCPDCRDUNISTR

E) DIMENSION ST(6) ,THE(4) ?DS(494) gCRASTR(4) ,DEUN(4) iDECR(

4) =1
FT=C(53)

el ITE=O
CRADIR-0
N'TCR=0
ITE-10

C
C SAVE STRESSES AND STRAINS B'EFORE CHANGING TO PRINCIPAL DIR
ECTIONS
C

DO 119 I=1P4

19 E(I)=EPS(!)
19 CONTINUE

r



7 CHANGE STRESSE~S AND STRAINS TO PRINCIPAL f:iIRECT IONS
C

CALL ROTATE(SYSlEvE1 ,THE)

-. DO 120 In1,3
IF*(CRASTR(I).EQ.0.0) GO TO 120
NCR=NCR+1

120 CONTINUE
IF (NCR.EO .0) 00102000

IF(NCR.E~o.1AND.ICR.EQ.2)G0'rO2000
IF(NCR*EQ,0)60T02000
SOTO 5000

C COMPUTE ENDOCHRONIC P'ARAMETER~S AND: INCREMENTAL STRESSESA
.2000 CALL FUNEN'D(SoS1,EtE1,THEE'S,1STRE'SNCR)
C CHECK FOR CRACKS IN CONCRETE (MAX# SRESS CRITERIA)

CALL CRACHK(!3SlS EpElvCRASTRPFTPNTCRPCRADIR)
I IF(NTCR#EQ*0)6O1O0 8000

IF(NTCR=i .AND#CRADIR.EQ#2)GCTO 2400
IF(NTCR.EO. I ANDCRADIR.L.T,4DGOTO2500
IF(NTCR..E~o2.AN['.CRADIR.EQ.4)GOTO 4000
IF(NTCRoEQ*3)GOTO 4000A
SOTO 2500A

2400 S(2)=0
IF(ISTRESqEG.2)GOTO 8)000

GOTO 8000
C EXIT IF NEW CRACK IS IN 2(THE1E) DIRECTION
2500 WRITE(3t27)
'27 FORMAT(5XP '***WARNING:ELEMENT H4AS CRACKED***')

CCRACK IN ONE DIRECTION/DETERMINE CRACKING DIRECTION
CALL ONECRA(SSlEEl 'SIG'SIG1,EFSvEPS1PCRASTRiCtTSTT

llEvDUNvDCRiApFTvICRISTRES)
SOTO 8000

80O 121 L 1=1,4 1'I PE S PE E PT E ST M X
CCHANGE STEEL AND CONCRETE STRE~SSES TO GLOBAL COORDINATES ý

CALL GLODtAL.(STvAEt)
SX( I)=S(I)

121 EX(I )E( I)
21 CONTINUE

CALL GLOI4AL(SXtAB)2

CALL GLOPAt.(EXYAPt4)
DO 122 1=1,4
EFS(I)=EX(I)
E(I)=EPS(I) I) (I

122. CONTINUE

DO 123 I=1#4
TST(I)=TST(I)+S'( I)
GUt.=SIG(I)+TST(I)

28 FORMAT(5X, 'SCON=' .EIO.4,5jX,'S~rEEL=' ,E10.4,5X, 'TOSTR='*
~. YE10#4)

123 CONTINUE
STOP

* RETURN
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C OPTION BASE 1
C THI1S SUB~ROUTINE COMPUTES STRESS AND STRAIN INVARIANTS
C STRESS INVARIANTS

SAV=S(l)+3(2)+S(3)
SAV=SAV/3o

SIN2=-(S(1)*S(2)+S(2)*S(3)+S(1)*S(3)),
SIN3=S(1)*S(2)*S(3)

c STRAIN INVARIENTS
DEAV=DE(1 )+DE(2)+[IE(3)
tiEAV=KiEAV/3,
DIDEIN2=((E.IE(1 )-EIE(2) )**2.}(t'E(2)-IIE(3))**2.+(DE(3)-E'E( -

DEIN2=((E(1)'-E(2))**2.+(E(2)--E(3))**2.+(E(3)-E(1) )**2.
)/. RITE(3,175)SINI ,5IN2,SIN3,DSIN2,DEItJ1,E'EEIN2,DEIN2

15 RETURN
END

C COM C(60)vD(t16)
V ~C(1 )=Q,?

C(2)=0*6/P7C
C(3)=1400#*(F*C/4650. )**0,5
C(4)=90#*360O./FC**c4*

H C(5)=0#045
C(6)=0,6*3600/FC'**2#
C(7)=0#15/FC**2.

01% C(B)=0*05
C(9)=15#/FC:**2..*(FC/3600)**lo5
C(10)=1.SE--3
C(11)nl,25E--4
C ( 12)=O .2/F'C
C(13)=0.8/r~c
C(14)=2o2E-5/FC
C(15)=25#
C(16)=1#095
C(17)=1#216
C(19)=0#94
C(20)=630O,/F~C**2,

C(22)=10004
C(23)=0#04I

C(25)=9. 1*F'C/7020.
C(27)=2.FC
C(29)w2#/F
C(28)=3*E--K3
C (30) =2
C(31 )wle0,
C(32)=30,
C(33)=n3500.
C (34)=0#013
C(35)mO,232 (3 (7) = 0 40125'



{ ~C(39)=0,183
C (40) =0.00"

C(43)=3E-3
C(44)=4.E6+-(FC'-4650)*1000,

C48) =8. *C( 47)
C:(49)=800*C( 47)
C (50) =P81
C(51 )=FIS2
C(53hPFs3
C(53)=5.*S0R(C(26J)

C SC=CRACK SPACING
C AC=AREA OF SHEAR PLANE
CCM::MINIMUN CONCRETE COVER To BAR

C NBL=NUMPER OF PAR PER LAYER
CBN=NET BEAM UIFITH

fT D(191)=040
345 CONTINUE

RETURN
II END

SUBROUTINE ROTATE(SiS1,EtE1 ,VIE)It ~ZERO0m,0#
DO 176 lm=1,4
THE(I)=ZE-RU.

176 CONTINUE1
c PREVIOUS STRESSES TO PRINCIPAL STRE'SSE.SNCAL F'RIN(S1,rHI-E;ZERO)
C CURRENT STRESSES TO PRINCIPAL. STRESSESU ~ CALL PRIN(SYTHEtZERO)

C PRE.VIGUS STRAINS TO PRINCIPAL STRAINS
El (4) =El (4)/2.
ZERO 1 #
CALL PRIN(EITHE,-Zf:R0)

C CURRENT STRAUNS TO FPRINCIrL STRAINS
E:(4)=E(4)/2,
CALL PRIN(E.,THEPZERO)
RETURN
END1
SUPRO~lI[IE F*IJNF:ND(SS1vEE1,rHiE,'CISTRES)

TO ATO.ECOM C(60)vE'(l.?6)I

TOLAM=TOLEAM
0EAZ ERG=0

DETAF'=ZLR(i
I TE-ZER0~

177 DE(In= -41(1)
11523 ITE=ITE+l

...



El I(I )=11 I( I )+I:IE I)
178 CON T INUI:

THlE (5)r-S 1.)(I
XLAMPI=L1(1,2)+-DtAMF

ETAPI=EIJ(14)+tETAP
CALL INVAR(S1 ,!PIlEeESINI ,43N2,SIN3,IISINt42,E'IN1,DDEIN2,

IDEMP2,ISTRES)
ZERO=2,
D0 181 1=1,4

1e1 SrRESIM=SIM
("ALL PRIN(SIRESSPTHEYZERO)
SMAX SI'R LSS (3)
SMIN=S1IRESS( 1)
SMED--STRFEKS$(2(2
IF(A8S(SMIN) .L.T.tE--4)SM1:N=O.O
IF (ADS (T.0,O)(,13'.10 TO 1M:161=0

XLPRI=SMIN*(AiRS 33)**( 1/3 )/( hIAllS( 33/C (d12)*3)
111500 TO 11620
165XL.PRI=SMIN*(63**(1/3)/(l+AE'S(G3/C(42))**3.))

11620 SLFPRI=C(40)*(1.-AE'S(XLAMFPI)/C(43))
C11. /1#4+C( 31) *XLAfIP 1)
E0=C( 44)At, XK=C1*EO/(3.*(l.---2.*C(39)))
G=C$E0/ (2 .* ( 1+C( 39) )
Xl=(C(:;0)*E.IEIN2/(C(28)**2.+EiEIN2) )**2. :
X1=Xl+(XLAMi/C( 38))*2

ork ~Xl=Xl*(C*(29)/(l*.C(2.7)*SINI))
SI=l .-XLAMI/C(3~3)

SNi=l.+ETAPI/C(34)+-(ETAF'I/C'35))**2#
F5=C( 12)*SMIN*( 1 +C(13)*SMIN)
F5=F5*(t'EIN2**0.25/(A8S(C(14)*SMII4)**O.24"+E'EIN2**0.5))

F4=(EIEIN2**0.25/(C(5)+E'EIN42**0.25))**3s
G23=(C'EIN2**0.25/(C(23+.[:'EIN2**0.Sn)**3.
G22=14C(22)*(SMIN/(SMAX-C(24)))**4o
022=1/G22
021TOP=C(19)*(SMEEI-SMIN)/(SMEF-C(24))--1,
G21BOT-C(20)*(1.-C(21)*ABS(SMIN)/(SMAX-C(24) ))*(SMIN-C

(24))
G2i=(G2iTOP/G211'OT~)**1.25
I'1=(SMEDt-SMIN)/(SMAX--C(24))

02=C(1*622*623*(*3.-C(
G11=C( 15)*1iEIN2*lc0,'*E1l*E2
612=1.+(SMIN/(C(18)A(SlIAX--C(24))))**4.

G2=G11*G122*
F2T0P=C(3)*5(URT(DEIEN2)*( 1 +ABiS(C('l*SIN2) **0,25+Fr5)
fr2B0T=1,-C(2)*SIN1+AB(C(9)*sIN2)**O,25'*r:-4..C,24)*S1N3*D

SIN2**. 125 S
W*14+032)
F2=F2TOF'/F2B0T
IF(S1N3.61'40.0)11850

GO TO 1186.0



. --.- .- ~ ...........

11850 FI=C(1)*(1,-O1)/(1,-C(6)*APS(SIN3)**(16/3, )*(1.+02) )
11860 F=F1+F2

lW(ETA.o6T40o0)G0 TO 11870

0010 11880I
11 8 8 w( +(C(32+C 1Q)/ETAI**20(,)) /C8))

C CALCULATE INCREMENTS IN LAMBDAPETAtAND INTRINSIC TIME
DPSI=SQRT(DDEIN2)
DPSIP=SORT (IDEIN1 **2)
DETA=F*DFST1
b'El'A Pl= H *DtP IF,
I:'CHIi=DE.TA/SF

IICIF:1iTAP/Sll
DZ=DCHI/C(36)
EIZP=11CHIP/C (37)
I:'LAMP=SI*X1*DPSI
J:'ELAIIP=SL.PR I*XLPRI sDPS I

CCALCULATE DEVIATORIC AND VOLUMETRIC STRESSES
VSTRAI=DE( )+t1EC2)iDE(3)
VSITRES=SI(1)+SI(2)+SI(3)
IF('i88(VSTRES),LTo,1E--12)VST*RES=0,0
IF(-A-BS(VSTRAI)) .LT.1.E-12)VSTRAI.04

t'STRES(I)=SI(I)-VSTRES/3#
DSTRAI(I )=DE(4)
DSTRES(4)=SI(4)
B( I)=DSTRAI (I)/SQRT(44*DDEIN2)
XKO(I)=DSI'RES(I)*F/(SF*C(36))t3.XK*(S1*XI+SLPRI*XLPRI)

192 IF(I .EQ.4.)XKO( I)=DST'RES(I)*F/(SF*C(36))
C MAT EIC=ZER(4p4)

DO 271 11vr3
271 t'C(I9I)=XK+4,*G/3.-VSTRES*H/(3.*SH*C(37) )-XKO(I)*B(I)-

0% PNN/3.)
DO 272 I=1,3
K=I+1
DO 273 J=K93
DC(IJ)=XK--2.*G/3.-VSTRES*H/(3.*SH*C(37))-XtKO(I)*(8(J)

-BNN/3*)
DCý(JI)=XK-2.*c3/3.--VSTRES*H/(3.*SH*C(37))-XKO(J)*(B(I)

-BNN/3t)
273 CONTINUE
272 CONTINUE

DO-274 3-103
l'C(4,J)=-XKO(4)*(14(J)-PNN/3o)
DC(Jr4)=-XKO(J)*B(4)

274 CONTINUE
E'C(4v4)=2.*G-XKO(4)*B(4)

C SOLVE FOR STRESSES (1-PL STRAIN12-PL STRESS)
IF(ISTRES=0)GO TO 12410
00 TO (12360?12410)PISTRES

12360 DIO 275 I=1t4
DSTRES( I)r0..0
DO 276 J=174
DSTRES( I)=DSTRES(I )+DC(I YJ)*DE(J)276 C04TINU

276 CONITINUE2ar 12510

It



Lit] 2() fit

*DE(J)
2130 CONTINUE
t2470 CONTINUE

DE(2)=-(DC(2,1)*FE(1)4DC(293)*DE(3)+DC(2,4)*DE(4))/IIC(
t 2P2)

DO 12550 1=196
DS(I)=E'STRESS(I)

12550 CONTINUE
I

IF(ITE*LlT.) GO 7O 12614
CDL.AM=ABS( (DLA.M-DLAM ) /DLAM)
CDETA=Ab~S((DETA-DETAI)/DETA)
IF(CDLAM.LT.TOLAM).AND.,(CDETA.'LTTOLETA) GO TO 12630
IF(ITE#GT.,7) GO TO 12630

12614 DLAM1=DLAM

C
C

IF(ISTRES#EQ,0) GO TO 13500
I( 1,1)=D( 1q1.)+fLAMP
D(1,3);*D(1,3)+DETA
P(194)E'( 1,4)4LIETAP

C CONVERT STRESSES/STRAINS TO GLOBAL COOREIT
NATES
C

IF(NCR.GT .0)G0T013500
DO 12790 I=1,4
E(I)=E1(I)+t'E(I)

t2790 CONTINUE i
13500 RETURN

SUBROUTINE PRIN(STRESStTHEPZERO) Hj
COMMHON C(60)
IF'(ZERO.EQ*2o) GO TO 14120
THE=STRESS(l)-STRESS(3)
IF(THrEoNE#0.) 130 TO 14060
IF(THE.EO.0.AND.STRESS(4) .GT,0,) THE=PI/4#
IF(THEEQe0sANtI.STRESS(4 )LT*0) T*HE=3.*PI/4.
GO TO 14080

14060 THE=2e*STRESS(4)/THE
THE-ATN( THE )/2.

14080 STEMP=(STRESS(I)+STRESS(3))/2,
TAUtIAX=S0RT(((STRESS(1)-STREE
TAUMAX=SORT *(((STRESS (1)-STRESS( 3)) /2. )**2 *+STRESS(4 )**

2.)
STRESS(4)u0.
STRESS( 1 hSTEMP+TAUMAX

STFRESS(3 )=STEtiP-TAUMAX

00-%~ ~ .-.



NII
14~0 ' ;Qt ~ W 30 10 14120

Si1AX=MINI (STRESI,( 1) STRESS(2) ,STRESS(3)) .
IF (ZER0.EQ.1.o) RETURN

110
DO 14290 1=1,3
IF (STRESS(I)oEQ.SMAX) GO TO 14200
IF (STRESS(I)*EO.SMIN) 0O TO 14250
SME11=Sl RE SS ( I)
(30 TO 14320

1420F (II.EO.I) IMED=I
IF (II.EO.2) Go To 14290
IMAX=I
60 TO 14290

14250 111=111+1
IF (III.EQ.2) IMED=I
IF (III.EQ.2) GO TO 14290
IMIN=I

14290 CONT INUE
IF(II .E~o3) .OR.(II *EQ,3)
IF (T'Q'.NE*3oAND*II.NE#3) 0O TO 14310

I Mi I N ý: I
14310 SMED=STRESS(ItIED)
14320 STRESS(1)=SMIN

STRESS( 2)SMED
14 T0q EiSS( 3)SMAX1

SUBROUTINE STEEL(STE.PSEPS1,EE1PTHEvSTRMAX)
DIMENSION DS(4,4)
COMMON C(60)PD(1,6)

C rH+IS SUBROUTINE IS CALLED BY MATERI.

(1 COMPUTE STEEL STIFFNESS FOR REPEATED LOADING*
C DETERMINE STEEL MODULUS IN STEEL LOCAL DIRECTIONS (R/
Z)

IDO 14660 J=1,3
I =J
IF((E:PS(I)*EPS1(1qI))sLTs0o) GO TO 14520
DIES(J)=ABS(EP*S(I) )-AF4S(EPS1( 1,1))

1.50GO TO 14530
150DES(J)=EPS(I)-EPS(1,I)

1.4530 IF' (DES(J).oT40o) GO TO 14560
ES(J)=C(46)
(30 TO 14660

(. STRAIN HARDENING
ES (J) =10000000.
ST RMAX=EPS ( I)

14660 CONTINUE
C cL
Cl

110 14700
CALL ZER(DSp4p4)I
Ar. THE (2)

115(2 ,1)=C(50)*ES(1)*COS(A)**4,+C(52)*ES(3)*SIN(A)**4

LiS(3,1)=(SIN(A)*COS(A))**2.*(C(50)*ES(1)+C(52L)*ES(3))



1)2*SNA)CSA (C5)E()*COS(A)**2.-C(5
ISIN(A)**2. )
DS(2t2)=C(51 )*ES(2)
L1S(3,3)=C(5O)*E:S( 1)*SIN(A)**4.,+CC52)*ES(3)*COS(A)**4,
DS(4v4)=(2.*COS(A)*SIN(A))**2.*(C(50)*ES( 1)+C(52)*ES(3

DS(3,4)=2,*SIN(A)*COSCA)*(C(50)*ESC 1)*SIN(A)**2,-C(52)
*ES(3) 7

1*COS(A)**2s)

PS( 1,4)=DS( 4,1)
DS(4t3)=DS(3t4)
DO 14830 I=l,4

180CONTINUE
DIO 14880 1=194
ST(I)=0. .

14O7 14870 J=194(I,)*D(

14880 CONTINUE
15500 RETURN

SUBROUTINE GLOEIAL(SXFAPB)
DIMENSION t'S(4,4)PSO(4)
CALL ZER(E'SP494)
DS(1It)=COS(A)**2.
bS(3p3)=CSI(A)**2.
tiS(3' 1 h=S( I ,')
DS(1v4h=-E*CGS(A)*SIN(A)

IF (El.EQ.1, )DS(4, 1)=2. *COS(A)*SIN( A)
DS( 4,3) =-DS(4, 1)
DS(4p4)=CQS(A)**2.-SIN(A)**2.
DlO 15660 1=:194

DO 15660 J~1.4
S0 I )lSO(I)+DS( I.J)*SX(J)

15660 CONTINUE
DO 15700 I=1.4
SX( I)=SO( I)

15700 CONTINUE
RET1'URN
SUBtROUTINE CRACIIK(S.S1 .EEI CASTRtFTNTCRCRADIR)I

C
(1 CHECK FOR CRACKS IN THREE DIRECTIONS
N

DO 16080 I=1,3
IF(CASTR(I).EQ.0.).AND.(S(I).LT.FT) GO TO 15830
IF (S(I).GT.FT),AND.(CASTR(I),EQ.0..) GO TO 15850
IF (CASTR(I),NE,0.) GO TO 15900

15830 CONTINUE'
c NO CRACKI'NG IN THIS DIREC~TION

0O TO 16080
15850 CONTINUE

FILINITIAL CRACKING OCCURS (TENSION OR COMPRESION STRAIN
FRO=(FT-S1(I))/(S(I)-S1(I))
CAS'TR(I)=E1(I)+F'RO*(S(l)--S1(I))
CRAEIIR=I

*4q



...........

NTICR=NiCR +1.
CO TO 16080

15900 CONTINUE:
N ELEMENT' PHRVIOUSLY CRACKED IN THIS DIRECTION

IF (E1(I).OGT.CASTR(I)).ANDd(E(I),GT.CASTR(I)) 00 TO 15
990

9 I0 (ir 1(fl,GT.CASTR(Il))AND.,E(I).LT.CASTR(I)) GO TO 15
IF (E1(I),LT.CASTR(I)).AND.(E(I).LT.CASTR(!)) 6O TO 16

070
IF (S1(I),LT.0.ANrI.SUl).6Tt0,) 3010O 16020

15950 CONTINUE
C CRACK REMAINS OPEN

NTCR.=NTCR+1
130 TO 16080

15980 CONTINUE
C OPEN CRACK CLOSES

00% NTCR=NTCR+ 1

00 *rO 16080
16020 CONTINUE
C CLOSED CRACK OPENS

CASTR(2)
CASTRII)=El(I)+PRO*(E(I)-El(I))
NT CR N TCR *
0O TO 16080

16070 CONTINUE
C CLOSED' CRACK REMAINS CLOSED i
16080 CONTINUE
16090 RETURN

SUBROUTINE ONECRA(SS1 tEE1 P510,5101tEFSEPS1,
*CASTRPC, TSTv THE. DUNPDCRPAPFT, ICR, ISTRES)
DIIMENSION ST(4) ,ET(4) ,tECR(4) ,DEUN(J) PDE(4) ,F(4,4) ,SXX

(4)PDEC(4?4)
1 ,FD(4p4) iTHE(5)

SC=C(54)
AC=55,

I=ICR
C

!TER=O
eIF(FTsEO.0)GOTO16510 i

PRO=(FT-S1(I))/(S(l)-S1(I))
C UPDATE STRESSES TO INCIPIENT CRACKING

DO 16420 1=1,4
SXX(I)=Eps(I)
ScT(I)=Si(I)+PRO*(S(l)-Sl(I))

E1S(I)=E1S(IpfFRO*(E()EPS(l))ES~o)
16420 CONTINUE

B=2*
CALL SLOF4AL(STAPP)

to' 11O 16500 I=194
SIG( I)=ST( I)H _IF(IoNEtICR)GO TO 16480

h _ S(I)=S1(I)

16480 E:PSI(1.I)=EPS(I)
IF(I .EQ,2)EPS(2)=E1(2)

1650b CONTINUE



V C ~DE:TERMINE i;ROPOR1i IN Uý l0lAL STRAIN INCR~EMENT
DO0 16560 I=1,4

DECR(I)vDEUN(I)

16560 ( CNINU (IE I I
IF(I*NE*2)GO TO 16560
DEUN(2)=DE(2)
I)ELR(2)=0

C DETERMINE TOTAL CRACKED DIRECTI-ONS
NCR=O
DO 16620 11,P3
IF(CASTR(I),E~o0sORIEQ*2) 0O TO 16620
MCR=NCR+ I

16620 CONTINUE
16640 CONTINUE

CALL ZER(Fv4t4)A
HTER =ITER+1
CALL CRASTI(S1 ,DCRPDECRCFTSTPTHEANCR)
DUM=00
T9US=DUN(I)+DEUN(I)

EoTi (I)aIUN() IAVI~ 16700 COTINUE
CALL FUNEND(SSI iETET1 ,THEDCDUIINCR)

C COMPUTE UNCRACKED STRAINS
CALL AER(FD94t4)
CALL fATMU(FvDCPFDp4v 1,4)
DO 16800 1=194

FD( I I)=FD(I, I)+1
16800 CONTINUE

CALL INV(FDgDC#4)A
DO 16880 I=1?4
[IEUN(I)=0.0O 16860 J=jP4C DEUN(I)=DEUN(I)+DC(IJ)*DE(J)

16060 CONTINUE
DECR( I )DE(lI)-E'EUN( I)

16880 CONTINUE
IF (ITERGT,2) 8O TO 16920

GO TO 16650
16920 CONTINUE
C COMPUTE STRESSES IN CRACKED AND UNCRACKED CONCRETE

ISTRES=DUMI
DO 16960 1-194
ET (I )=DUN( I )DEUN( I)

16960 CONTINUE
CALL FUNEND(SS1 ,ETpET1 iTHEDC, ISTRESNCR)

CALL CRASTI($1 PDCRPDECR'CPFPTSTvTHEANCR)
CALL ZER(FDP4)
CALL INV(FDPDCP4)
CALL ZER(SC-4)
DO0 1000 I--lv4
DO 1000 J=194
SCC I J)=F( IJ)+FD( I J) I
NEXT J
CAL.L ZER(r['u4)
CALL INV(FDYSCP4)

......



A IDO 17060 J1=9
S3C3N ( I )0
DO 17050 J1,t4

17050 CONTINUE

I aDCR(I)+DECR(I)
17060 11OWl INUF:

RE WRN
SUBRO~UTINE CRAST (Si ,EI ,EECRCFTSTTHEANCR)
IT E= 0

C COMPFUTE FLEXIBiILITY COEFFICIENTS FOR CRACKED PLANV"
SC.= C( 5 4

CM=C(5)
NBI=C(58)
NBIC(59)

FYC45)

FS=Q .0
CFWrABtS(DCR( I )DECR(1) )*SCIHITEoEO. 1) CW=ABS(DCR(3)+DECR(3) )*SC

18170 CD=ABS(DIECR(4))*SC
XKN=m590000*c(50)I XKN=590000*C (50)IF (ITEsEO.1) XKN=590000*C(52)

E'LIM=(3,4E5--XKN/CW)*1#09E-7
IF ('UM,01'.0o) 60 10 18220
DUM=0.

18220 CO=CWIF (COsLTSE-3) C0=403
AST=1000*AC/(3,9*(C0-,002)+DUM)
VEI)Y.-:92*E'B**2 ,*SURI (FC+FY/1E6)
VDO=13E*8N/N81*(,47+,54*CM/(8N/NB48**2,+oB))
VDU=YDY
IF (VDOoLTVDY) vr'U=VtiO

A2=0*
t ~~F'S=TST(I.) ST()

IF' (ITEEO.1) ST(3
FC=FC/1000
P I= 1 *2. *F'S/FY
IF' (B1,LT.0,) B1=0,
0~2=FSi*t't*SQRTI(FC)/( .003*A1*FY)
DSTOP=-(A2*VDU/A1-2.**2*CD) )21 *E12DSITOF=-(A2*VE'U/A1-2.**82*CD)*2.*T42+2,*81*08*VDU*SGRT(FC

DST=1000**312, *NIII*DEI**1 .75*NB
GO TO 18380

18350 DS8OT=(A2*VDU/A1-2.*B2*CD)**2,+4,*81*teP*SORT(FC)*VDU*C
D/(,003*A1) J

DSBOT=2, *SOR1 (E'SBOT)
DlST = 2+ ElS TO F/ EtS OT
ElST = ESi *1000.* NBI
F 4--AS1+1IS1'
F 4-.1. /F4



C~tDS(cw)

FJr(3,9/XKN41,o9.-/*XtKN/(CW*(XKN*CW+1,)))*VO/1000,

;2 0OsI7 CW (-#6)4*22*CW**(-,552)-104)F
F2uF2TOF*AL1/(r3B0T*XKN*10Oo,)
CALL ZER(F94P4)
IF (ITE.EU,1) 00 TO 20150
F(1, 1)mFl*AC/SC
F( 1,4)uF2*AC./SC,

I'(4t4)-hF4*AC/SC"
IF (NCR.EG.1) RETURN
DD=C(56)

CMx2s625
Nul~l

GO TO 18170

20150 F(3v3)-F1*AC/SC
`(~3r4)~--2*AC/SC
F( 41i3) -F-3*A[C/SC
F(4p4)=F(4t4)+F4*ACI'SC

I RETURN
SUB~ROUTINE ZER(WYiNYM)
D~iENSION W(NPt1)

01 Ju1:N

I 0W(IIJ)=000
RETURN
SUBROUTINE MATMU(ApBtCtNPMPL) j
DIMENSION A(NPtl)PB(I1L)PC(NPL)DO 1 .f1=9
DO I J=1tM

tC(IYJ)=C( IYJ)+A(IPK)*It(KPJ)
FfiURN


